Package 'WCM'

Title: Water Cloud Model (WCM) for the Simulation of Leaf Area Index (LAI) and Soil Moisture (SM) from Microwave Backscattering
Description: Retrieval the leaf area index (LAI) and soil moisture (SM) from microwave backscattering data using water cloud model (WCM) model . The WCM algorithm attributed to Pervot et al.(1993) <doi:10.1016/0034-4257(93)90053-Z>. The authors are grateful to SAC, ISRO, Ahmedabad for providing financial support to Dr. Prashant K Srivastava to conduct this research work.
Authors: Ujjwal Singh <[email protected]> Prashant K Srivastava <[email protected])> Dharmendra Kumar Pandey <[email protected]> Sumit Kumar Chaudhary <[email protected]> Dileep Kumar Gupta <[email protected]>
Maintainer: Ujjwal Singh <[email protected]>
License: GPL (>= 3)
Version: 0.2.2
Built: 2024-10-31 18:35:43 UTC
Source: https://github.com/cran/WCM

Help Index


Inversion of LAI from look up table generated by WCM

Description

Inversion of LAI from look up table generated by WCM

Usage

lai_inversion_lut(img, lookuptable)

Arguments

img

raster object

lookuptable

Look up table simulated from 'wcm_sim' function

Value

a raster object (pixel value represents LAI)

Examples

radar <- raster::raster(ncol=10, nrow=10)
val <- seq(-12,-7, length.out=100)
radar[] <- val
A= -9.596695
B= -0.005331
C= -11.758309
D=  0.011344
lut <- lut_wcm(LAI=seq(1,6,0.1), SM=seq(0,.6,.01),coeff=c(A,B,C,D))
example(out_lai <- lai_inversion_lut(img = radar,lookuptable = lut))

Look up table of WCM

Description

Look up table of WCM

Usage

lut_wcm(LAI, SM, coeff)

Arguments

LAI

one dimensional row vector or a range of LAI value

SM

one dimensionalrow vector or a range of SM value

coeff

Generated A, B, C, D fitted coefficient for WCM using non linear least square using in situ data

Value

look up table for WCM for given range of LAI and SM

Examples

A= -9.596695
B=-0.005331
C=-11.758309
D=0.011344
lookuptable <- lut_wcm(LAI=seq(1,6,0.1), SM=seq(0,.6,.01),coeff=c(A,B,C,D))

Inversion of SM from look up table generated by WCM

Description

Inversion of SM from look up table generated by WCM

Usage

sm_inversion_lut(img, lookuptable)

Arguments

img

raster object

lookuptable

Look up table simulated from 'wcm_sim' function

Value

a raster object (pixel value represents SM)

Examples

radar1 <- raster::raster(ncol=10, nrow=10)
val <- seq(-12,-7, length.out=100)
radar1[] <- val
A= -9.596695
B= -0.005331
C= -11.758309
D=  0.011344
lut1 <- lut_wcm(LAI=seq(1,6,0.1), SM=seq(0,.6,.01),coeff=c(A,B,C,D))
example(out_sm <- sm_inversion_lut(img = radar1,lookuptable = lut1))

Simulate backscattering coefficient using WCM model

Description

This function can be used to simulate the backscattering coefficient using WCM. This function can be called in nls function for generation of model coefficients (A,B,C,D).

Usage

wcm_sim(X, Y, theta, A, B, C, D)

Arguments

X

In situ LAI or vegetation descriptor

Y

In situ SM soil moisture

theta

incident angle of Satellite sensor

A

fitted coefficient for WCM using non linear least squre using in situ data

B

fitted coefficient for WCM using non linear least squre using in situ data

C

fitted coefficient for WCM using non linear least squre using in situ data

D

fitted coefficient for WCM using non linear least squre using in situ data

wcm_sim

is simulated backscattering coefficient

Value

simulated backscattering coefficient

Examples

# For single value.
 n <- wcm_sim(4,.3,48.9,-9.596695,-0.005331,-11.758309,0.011344)

#For list of value
X<-c(5.34, 4.34, 4.32, 4.12, 4.17, 3.58, 5.39, 5.66, 5.47, 5.73, 5.76, 5.93, 4.91, 5.36, 6.15,
     4.56, 5.44, 6.54, 6.20, 6.34, 5.56, 5.88, 7.34, 5.74, 4.81, 5.73, 3.63, 4.61, 4.76, 4.02)
Y<-c(35.0, 26.0, 18.0, 13.0, 18.0, 22.0, 19.0, 16.5, 20.0, 24.0, 24.0, 21.0, 13.0, 22.0, 25.0,
     24.0, 30.0, 23.0, 18.0, 17.6, 15.0, 17.0, 27.0, 22.0, 21.0, 15.0, 15.0, 18.0, 31.0, 10.0)

w<-c(-9.604, -11.648, -11.556, -11.556, -11.090, -10.444, -10.444, -10.042,  -9.200,  -9.750,
       -9.200,  -9.200,  -9.812,  -9.972,  -8.938,  -9.200,  -8.198,  -7.722,  -7.348,  -7.348,
       -8.198, -10.082,  -6.870,  -8.104,  -8.732,  -7.830, -10.686, -10.964, -10.976, -10.976)

theta<-48.9
example(nlc<-nls.control(maxiter = 50000, tol = 1e-05, minFactor = 1/100000000000,
printEval = FALSE, warnOnly = FALSE))
example(k<-nls(w~wcm_sim(X,Y,theta,A,B,C,D),control=nlc,
 start=list(A= 0.01,B=0.01,C=-21,D= 0.00014),trace = T))
example(y<-predict(k))
n <- wcm_sim(X,Y,theta,-9.596695,-0.005331,-11.758309,0.011344)